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Absh’act. We utilize a many-body style formalism to compute the long-range effective 
diffusivity xcr for dispersal of a pssive scalar field in a random irrotational flow With molecular 
diffusivity. By comparing the theoretical results with the outcome of computer simulations we 
show that a renormalization-group approach that includes an appropriate vertex renormalization 
is superior to low-order perturbation theory and to the Harlree-Fock approximation. and gives 
a rather accurate method of computing K, for a range of parameter vdues 

1. Introduction 

Graphical techniques for the perturbative analysis of the large-scale behaviour of fluid flow 
and transport in various random environments have been developed by a number of authors 
[1-6]. In this paper we describe an extension of these techniques [7] to the problem of a 
passive scalar transported by a random irrotational Row, and study the efficacy of different 
resummation methods by comparing the results with computer simulation. We infer the 
large-scale properties of the dispersal from the long-range behaviour of the ensemble average 
of the Green function (G (I)), where G (I) is the steady-state solution for a unit point source 
of a contaminant at the origin. We are concerned with calculating the effective diffusivity 
K,, which is defined by 

in D dimensions. 
G (z) satisfies the equation 

KoVZG 4- AV@. VG = -6 (I) (2) 
where the velocity field of the random flow is 2) = AV$ (z), and $ (I) is a random Gaussian 
field with zero mean. The molecular diffusivity is K~ which we shall subsequently set to 
unity for convenience. 

Using graphical rules set out below, we calculate K~ in the Hartree-Fock approximation 
and by exploiting renormalization-group methods. 

2. Perturbation theory 

We take $ to be homogeneous Gaussian random field characterized by 

($ (11) = 0 and (@ (2) 4 (VI) = A (I - Y) 
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k k-q Figure 1. Velrex diagram. 

the angled brackets indicating averaging over the disorder. We shall also take the disorder to 
be isotropic, that is A = A (Irl). In Fourier space, equation (2) in D dimensions becomes 

On iteration this expression gives the perturbation expansion of 
disorder-averaged Green function is calculated using Wick's theorem and we obtain 

( k )  in powers of A. The 

where C (k) denotes the one-particle-irreducible diagrams. The asymptotic ( I )  implies that 

i.e. for small Ikl, the terms in 
unity to 

( k )  of O(k') renormalize K, over long distances from 

(7) 
d 

K, = 1 - --C (k)llc=a. 
dk2 

The Feynman rules for the diagrammatic perturbation expansion are as follows: 
(i) Wavevector is conserved at each vertex. 
(ii) Each full line canies a factor of I/k2. 
(iii) Wavevector is integrated around closed loops with a factor dq/(Za)D. 
(iv) Each vertex of the form of figure 1 carries a factor k (k - q) . q. 
(v) Each dotted line carries a factor z\ (4). 

Applying these rules we find to OQ4) 

Higher-order terms can be evaluated directly using the above rules as in [5]. However, our 
aim is to show that properly formulated calculations at the oneloop level can account for 
important higher-order effects in a physically understandable way. 
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3. Hartree-Fock approximation 

In the HartreeFock method C ( k )  is approximated by the sum over 'rainbow' diagrams 
which we denote by Q ( k )  and which are shown in figure 2. 

,... 
e=- + -  
Figure 2. The rainbow diagram summation for Ule propagator conesponding to the W e e -  
Fock approximation. 

The Green function in this approximation is given by 

However, we have the self-consistency equation 

Note the linearized form of this equation gives the sum of the rainbow graphs, which look 
like sequences of loops stacked on loops, as can be seen from a similar style argument. 
After performing the angular integration, the resulting form of (10) is 

One possible form for the correlation function in three dimensions is 

(Note that normalizations are chosen in accordance with the convention A (0) = I.) In 
the correlation functions above, we see that there is only one length scale introduced, i.e. 
A;'. Therefore, by dimensional analysis, Z is a function of k/A, and we can, without 
loss of generality, take A0 = 1. We may solve (11) numerically, and the fact that the 
Hartree-Fock approximation can be thought of as being obtained from successive iterations 
of rainbow graphs suggests that an iterative numerical scheme would be successful. The 
Gaussian form of the two-point correlation function (12) means that one can terminate the 
range of integration quite quickly-when A. = 1 the cut-off was taken to be at k = 20. 
The explicit form of the equation in this case is 

where 
R(k,q)=[2(k2+q2) (kqcosh(kq)- sinh(kq))-4((k2qz+1)sinh (kq)-kqcosh(kq))]. 

(14) 
The iterations converged after about ten steps and the dependence of the solution on the 
step size chosen did not vary significantly on going from 0.05 to 0.02 (i.e. 400 grid points to 
IO00 grid points). The linearized form of the Hartree-Fock equation was also solved. For 
values of h slightly greater than unity the iterations did not converge (the value at which this 
happened was 1.0443, but one would need greater confidence in the numerical techniques 
used before making a definitive statement), and the linearized form of the equation yielded 
values for Z(0) greater than I and hence negative diffusivities. 
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4. One-loop renormalization-group analysis 

The most straightforward formulation of the renormalization-group method is to split t he  
field q5 into two components 4i  and @:, where 

D S Dean et a1 

and 

This is equivalent to the approach used in [8]. The assumption made is that the high- 
wavenumber behaviour can be averaged out to yield a renormalized form of (2), namely 

K (A) V'G~ t 104;. OCA = -8 (z) (17) 
where the deviation from unity of the renormalized diffusivity K (A), is due to the high- 
wavenumber component (4; ) of the random field 4, and CA is the Green function for 
the system after this high-wavenumber component of the field has been averaged out. In 
principle, the equation satisfied by CA is more complex than (17) since the averaging 
procedure generates new terms linear in CA that are higher order in numbers of derivatives 
and powers of $A than those included. The approximation we adopt is to neglect these new 
terms. The next step is to average out a further component of the field 4 that has support 
on the infinitesimal shell of wavenumber space 141 E (A, A -SA) ,  and then see how this 
modifies K (A). 

From equation (7) we know that 

where EA (IC) indicates the one-particle-irreducible diagrams evaluated with the low- 
wavenumber cut-off A. If we now average out the shell of width SA then to 0 ( 8 A ) ,  
which is simply the one-loop contribution, we find 

The factor K ( A )  appears in the denominator of the integrand as we have assumed that we 
have started with (17). Hence we find 

where SD is the surface area of the unit D - 1 sphere. Using (18) we find 

Therefore in  this scheme of approximation the effective diffusivity is given by 

This result is, of course, consistent with first-order perturbation theory, 
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5. Improved renormalization 

In this section we improve the renormalization-group scheme by including the vertex 
correction which causes A to be renormalized in a way dependent on the scale A. We denote 
the running value of this coupling by A (A), where h (m) = 1. The interaction vertex shown 
in figure 1 can be associated with a tensor rij, the value of the vertex being given by 

rcjb ( I C  - 4)' . (24) 
Before renormalization, i.e. in the bare system, 

(25) 
the self-similarity ansatz says that we only keep vertex interactions of this form, this amounts 
to insisting that the renormalized random field remains Gaussian. Carrying out a partial 
averaging in wavenumber space, and averaging out the Fourier modes of the random field 
in the infinitesimal shell in wavenumber space (A - SA, A), we introduce a new interaction 
shown diagrammatically in figure 3. This diagram is equal to 

r.. -AS.. ' I  - 'I 

= 6rij ( I C ,  9) qi ( I C  - q) j  . (26) 
The self-similarity ansatz tells us to neglect any higher-order terms in k and q and thus we 
approximate 6rij (k, q) by Sr i j  (0,O) (one could also argue that this is valid because the 
long-range interactions, i.e. the low-wavenumber regime, make the dominant contributions). 
Hence 

Consequently, comparing (28) with (25). we find 

and hence 

i q  
h 

k k - q '  i k - q - q '  k - q  
\ \ \ 
/ I / 

I 
4 Figure 3. Renormalized vertex. 
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In this scheme the renormalization-group flow OCCUIS in a two-dimensional space 
( K  ( A ) ,  A (A)) and the equation describing the flow of K (A) is modified from (21) to 

D S Dean ez a[ 

as we must use the running value of .I when we renormalize K (A). 
renormalization-group equation for K (A) is 

Therefore the 

and hence the estimate for K~ under this scheme is 

6. The numerical simulation 

The simulation is based on the numerical integration of the relevant stochastic differential 
equation for a large number of particles in a large number of realizations of the flow field. 
We are interested in the calculation of the inverse of the operator 

H = VZ+AV@ . V .  (34) 

dX,  = A d B ,  + AV@ (X,) dt . (35) 

(36) 
where the components of are independent N(O.1) random variables. However, when 
implemented, the above algorithm yields a probability distribution which evolves with an 
error O(A.t). It is therefore better to use the extended Runge-Kutta scheme [2, 91: 

The operator H is the generator for the diffusion obeying the stochastic differential equation 

A naive discretization for the stochastic differential equation (35) is 

Ax = (ZAf)'/ 'c 4- AV@ (x) A? 

AX = (Al) l /Z(h + &) + AV@ (z') At (37) 

(38)  
and cl and E2 are independent random vectors whose components are N ( 0 , l ) .  This 
extended algorithm generates a probability distribution evolving with error O((At)'). 

The realizations of the random field are constructed by a method which is a simplification 
of that introduced in [lo] and which was used in [5]. We set 

where 

X' = z + fAAtV@ (2) + (At)1'2C1 

where (6") and (kn)  are independently distributed random variables. Each phase f, is 
uniformly distributed on [0,2n].  If P ( k )  denotes the probability distribution for the kn, 
then one finds 

(@@)@(U)) = d k  P(k) COS (z - U)) . (40) 

Consequently to obtain the correlation function required we choose P (k) to be the Fourier 
transform of A. By the central limit theorem the field 4 converges to a Gaussian as the 

s 
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0 Figurc 4. Simulated mem squared displacement 
against time f o r i  = 1. 

number of modes N is increased, the deviations from Gaussian statistics being of order 
1/N. In our simulation N is taken to be 128. In order for comparison with the theoretical 
results and for computational simplicity, we take 

i.e. we choose each of the components of the k, to be N(0,l) .  
The basis of the simulation is to track the trajectories of particles in M realizations of 

the field $, each realization of the field containing N modes: M and N are taken to be 
256 and 128, respectively, and the number of particles tracked in each realization is also 
taken to be N. The particles in each realization are started two correlation lengths apart 
(in our case a distance of 2) in order to take full advantage of any decorrelation within 
individual realizations. The average of some quantity g is calculated from within individual 
realizations by averaging over particle paths to give estimators (g)(, 1 < i 4 M, and the 
final estimator (g) and its variance are computed by the standard mini-ensemble formulae 

and 

The assumption that an effective diffusivity exists implies that 

( E  (x:) ) - 2DKet (44) 
for sufficiently large t .  Noting this we may measure K, in two ways. 
(i) The mean squared displacement is measured in the simulation and its average plotted 

against time. The asymptotic slope is used to calculate the effective diffusivity. The 
simulation is run for a total of 60s (600 time steps of length O . l ) ,  as we can see 
from figure 4 the graph becomes linear reasmably quickly. In order to ensure we are 
sampling the asymptotic slope only the final 30s of data was used. The slope of this 
data is estimated using a least-squares fit. 

(ii) Applying Ita's formula [ 111 and using the stochastic differential equation (35) we find 

(45) 

(46) 

dX: = 2Xc * dX, + (dX,)' 

= ZX, . (&B, + AV$ (X,)) + 2 d t .  
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Figure 5. ResultS for zS using measurement 
method (i) shown with one-loop perturbation 
theory (full curve). one.loop renormalization 

0.0 0.2 0.4 0.6 0.8 1.0 group (dotted curve) m d  Harttee-Fock (broken 0.40 

I curve). 

0.80 ".. 
.?% . %.. 

\ \  

Y \ .. . .  . ,. . '. , '. 
L \  0.60 % .. 

Figure 6. R e s u l ~  for n; wing measurement 
method (ii) shown with one-loop perturbation 
theory (full curve), one-loop renormalization 

0.0 0.2 a4 0.6 0.8 i.0 ~ o u p  (dotted curve) and Harrree-Fock (broken 0.40 

A curve). 

Taking expectations we obtain 

(47) 
d 
--E (X:) = 2D + 2AE ( X ,  . V# (X,)) . 
d t  

Hence another estimator for K~ is given by the asymptotic value of 

In estimating K, from this data we weight in favour of data points with smaller standard 
deviations in the usual way, that is we take 

The standard error on the estimate of K ,  is taken to be the maximum standard deviation 
from the points in the data used, i.e. max(q). This is a very conservative estimate of 
the error. In addition any decorrelation over time of the measured data would also reduce 
the quoted error. The results for measurements (i) and (ii) for the range 0 < h < 1 are 
shown plotted in figures 5 and 6, respectively, together with the predicted values from one- 
loop perturbation theory, one-loop renormalization-group analysis and the Hartree-Fock 
approximation. The results of the full self-similar renormalization-group analysis against 
results from measurement types ( i )  and (ii) are shown in figures 7 and 8, respectively, for 
the range 0 < A c 2. 
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1 
0.0 CL5 1 0 9.5 2.0 

1 

0.2 ‘ 
Figure 7. Results for x. using measucement method (i) 
shown with predictions of selfsimilar renormaliwtion- 
group analysis. 
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Figure 8. Resulw for xc using measurement method (ii) 
shown with predictions of self-similar r e n o d i m i o n -  
group analysis. 

7. Discussion and conclusions 

The simple one-loop perturbation theory gives a reasonable prediction for K, up to A - $, 
but predicts too small a value for larger values of h. Both the Hartree-Fock and the 
simplest one-loop renormalization-group methods actually perform worse than basic one- 
loop perturbation theory, predicting results that are even lower for the larger values of 
h. This is evident from figures 5 and 6. In contrast. the self-similar renormalization- 
group method performs very well over an even larger range of A, as is shown in figures 7 
and 8. We attribute the success of the self-similar method to the incorporation of new 
interactions in the form of a vertex renormalization and to the fact that a full self-similarity 
assumption is a natural one to make since we believe that the physical picture is not 
drastically altered by renormalization. The outcome is to give a result that is independent 
of the details of the spectrum and depends only on A(0): the integral over the wavenumber 
spectrum. 

We remark that the use of the diagrammatic method makes it easy to identify 
the inclusion of coupling constant renormalization as a natural way to improve the 
renormalization-group calculation. In principle, further improvements can be made 
in a systematic way by including new couplings generated by higher loop effects 
which are associated with new terms in the equation for the Green function. The 
importance of these higher-order effects, especially at larger values of A, remains to be 
investigated, 

In the absence of molecular diffusivity (KO = 0) all particles in a time-independent 
gradient flow will accumulate at local maxima of @(I). This implies that K, = 0 when 
either (KO = 0) or h + 00 for fixed KO. Only the improved renormalization-group calculation 
of K~ has these properties. This gives confidence that this method is a physically sensible 
scheme and is likely to give good results when applied to more general models than that 
discussed in this paper. 
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